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With the progress of both photonics and electronics, optoelectronic synapses are considered potential candidates
to challenge the von Neumann bottleneck and the field of visual bionics in the era of big data. They are also
regarded as the basis for integrated artificial neural networks (ANNs) owing to their flexible optoelectronic tun-
able properties such as high bandwidth, low power consumption, and high-density integration. Over the recent
years, following the emergence of metal halide perovskite (MHP) materials possessing fascinating optoelectronic
properties, novel MHP-based optoelectronic synaptic devices have been exploited for numerous applications
ranging from artificial vision systems (AVSs) to neuromorphic computing. Herein, we briefly review the appli-
cation prospects and current status of MHP-based optoelectronic synapses, discuss the basic synaptic behaviors
capable of being implemented, and assess their feasibility to mimic biological synapses. Then, we focus on the
two-terminal optoelectronic synaptic memristors and three-terminal transistor synaptic phototransistors (SPTs),
the two essential apparatus structures for optoelectronic synapses, expounding their basic features and operating
mechanisms. Finally, we summarize the recent applications of optoelectronic synapses in neuromorphic systems,
including neuromorphic computing, high-order learning behaviors, and neuromorphic vision systems, outlining
their potential opportunities and future development directions as neuromorphic devices in the field of artificial
intelligence (AI). © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.480057

1. INTRODUCTION

The sustainable development of conventional computers with
von Neumann architecture and silicon complementary metal–
oxide semiconductor (CMOS)-based hardware has been ham-
pered as follows: (i) devices restricted by scaling theory near the
limits of physics; (ii) von Neumann bottleneck due to physi-
cally separated storage and data processing units [1–4]. As the
highest structure of the nervous system, the human brain is
responsible for processing information received by various
senses, an activity that depends on the existence of 100 billion
neurons and 1000 trillion synapses interconnected in the
cerebral cortex at an ultra-high density [5–7]. In contrast,
the human brain can execute complex tasks such as parallel
computation and cognitive learning with the advantages of
being highly fault-tolerant and event-driven, thus generating
interest in brain-like computers [8–10]. Over the past few
years, significant progress has been achieved regarding brain-
like chips, among which the best-known one is the TrueNorth

chip introduced by IBM in 2014 [11–13]. However, since such
chips for high-speed computation still suffer from low integra-
tion density and high energy consumption compared with the
human brain due to the limitations of the traditional CMOS
structure, the emergence of synaptic electronics will lead to the
future of artificial intelligence (AI).

Inspired by biological synapses, several emerging devices
with the advantages of simple device structure and high-density
integration, such as phase-change memories, resistive switching
memories, and field effect transistors, were proposed to mimic
the synaptic plasticity [14–19]. To date, our comprehension
concerning the complex characteristics of synaptic devices re-
mains at a preliminary level, with a growing appreciation of the
essential role played by both material selection and signal
modulation. Despite enormous efforts that have been devoted
to investigating electrical synapses, the all-electronic design
raises issues of high energy consumption, limiting further
applications in artificial neural networks (ANNs) [20]. Here,
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taking into account the important role played by artificial vision
systems (AVSs) in neuromorphic engineering, optoelectronic
synapses exhibiting excellent characteristics in terms of large
bandwidth and low power consumption have been developed
as the foundation for the next generation of neuromorphic sys-
tems [21,22]. So far, metal oxide films, organic semiconduc-
tors, and other materials have been successively employed in
synaptic devices modulated by light signals or photoelectric
synergistic properties [23–28].

Metal halide perovskites (MHPs) have emerged as
revolutionary photosensitive materials with the generic formula
ABX3, in which A represents the cation, B denotes the divalent
metal ion, and X refers to the halide [29–31]. In the past few
years, the family of MHP materials has drawn considerable at-
tention for being employed in a wide range of electronic devices
like solar cells, light-emitting diodes, photodetectors, photo-
transistors, memory devices, flexible devices, and lasers, attrib-
uted to their superior combination of optoelectronic properties,
including large light absorption coefficients, long carrier life-
times/diffusion lengths, decent charge carrier mobility, and
low exciton binding energies [32–45]. Interestingly, compared
to conventional organic and inorganic materials, electronic de-
vices employing MHPs tend to exhibit ubiquitous hysteresis
effects, a phenomenon that motivates MHPs materials to serve
as the most desirable contenders for simulating biological

synapses, typically attributed to the inherent ion migration
properties or charge carrier traps of MHPs [46–50]. To date,
multiple types of optoelectronic synaptic devices based on
MHPs have been developed, leveraging the dependence in syn-
aptic plasticity upon optical pulses, and they hold the promise
of constructing multifunctional artificial neuromorphic systems
that perceive external environmental changes as well as the
processing of performance information, in addition to accom-
plishing brain-like computational behaviors for higher-order
learning and handwritten digit recognition [51–53].

In this manuscript, the current status and applications of
MHP-based optoelectronic synapses during recent years are
comprehensively summarized in Fig. 1 [23,54–60]. A brief de-
scription of the synaptic functions of the optoelectronic synap-
tic devices is presented in Section 2, as well as the calculation
regarding the energy consumption involved in the synaptic
events. Focusing on device architecture, Section 3 discusses
in detail MHP-based optoelectronic synapses from the perspec-
tives of both structural design and potential physical mecha-
nisms, providing innovative approaches for the exploitation
of the novel artificial synapses. Subsequently, the innovative
functional neuromorphic applications utilizing MHP-based
synaptic devices for associative learning, emotional learning,
logical functions, arithmetic operations, and neuromorphic
visual systems (NVSs) are further reviewed in Section 4. In con-
clusion, the obstacles and challenges surrounding the optoelec-
tronic synapse are outlined in Section 5, along with reasonable
predictions related to their applications.

2. BIOLOGICAL SYNAPSES AND BASIC
SYNAPTIC BEHAVIOR

Synapses, as an essential component of information transmis-
sion throughout the nervous system, provide a suitable imita-
tion object for researchers to build ANNs. In recent years, more
and more MHP-based optoelectronic synaptic devices have
been proposed to mimic the basic functions of biological syn-
apses, such as synaptic plasticity [51,57,61,62]. In Section 2,
the connection between neurons and synapses is described, fol-
lowed by a highlight of the typical synaptic behavior of MHP-
based optoelectronic synaptic devices and their performance
metrics. How to achieve these synaptic behaviors with as little
energy consumption as possible remains a great challenge for
the construction of the devices [63–66].

A. Neurons and Synapses
Neurons, also called nerve cells, are the most basic structural
and functional units of the biological nervous system.
Synapses are located between two neurons that are in contact
with each other and assume the function of transmitting infor-
mation in a unidirectional manner within the nervous system.
There are two types of biological synapses: chemical synapses
and electrical synapses, which use chemical and electrical signals
to transmit information, respectively. In this work, we focus on
the working mechanism of chemical synapses. As shown in
Fig. 2(a), a synapse consists of a combination of a presynaptic
membrane, a postsynaptic membrane, and a narrow space
between them (the synaptic cleft).

Fig. 1. Overview of this review. Neurons and synapses reprinted
with permission from [54]. Copyright 2013, American Institute of
Physics. Synaptic plasticity reprinted with permission from [55].
Copyright 2022, Wiley-VCH. Neuromorphic computing reprinted
with permission from [56], copyright 2022, Elsevier, and from
[57], copyright 2022, Wiley-VCH. Neuromorphic visual systems re-
printed with permission from [23], copyright 2020, American
Chemical Society, and from [58], copyright 2020, Wiley-VCH. High-
order learning behaviors reprinted with permission from [59].
Copyright 2020, Wiley-VCH. Memristors reprinted with permission
from [23]. Copyright 2020, American Chemical Society. Transistors
reprinted with permission from [60]. Copyright 2021, Wiley-VCH.
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When a nerve impulse is transmitted to the presynaptic
membrane, voltage-gated calcium ion channels in the mem-
brane open, and extracellular Ca2� enters the presynaptic
element, allowing neurotransmitters to be released into the syn-
aptic cleft [70]. Some neurotransmitters bind to the corre-
sponding receptors on the postsynaptic membrane, resulting
in the opening of chemically gated channels through which
the corresponding ions enter the postsynaptic element [71].
If excitatory neurotransmitters are released from the presynap-
tic membrane, which increases the permeability of the postsy-
naptic membrane to Na� and K� increases, resulting in a
localized depolarization potential—that is, an excitatory post-
synaptic potential (EPSP)—then the synapse is referred to as an
excitatory synapse. Conversely, if the presynaptic membrane
releases inhibitory neurotransmitters that increase the per-
meability of the postsynaptic membrane to Cl−, leading to a
local hyperpolarization potential, or inhibitory postsynaptic po-
tential (IPSP), then the synapse is called an inhibitory synapse.
It is worth noting that there are many synapses in a neuron.
When the sum of the excitatory synaptic activity in the neuron
exceeds the sum of the inhibitory synaptic activity and action
potentials in the axons of the neuron are triggered, leading to

the occurrence of nerve impulses, the neuron is presented as
excitatory and, conversely, as inhibitory.

B. Synaptic Plasticity
During this dynamic process of neurons transmitting informa-
tion, the strength of the connection between them is deter-
mined by the synaptic weight [68,72]. For biological nervous
systems, variations in synaptic weights are defined as synaptic
plasticity, which causes postsynaptic currents (PSCs) to fluctu-
ate in response to the activity of presynaptic neurons and is
regarded as fundamental to the human brain’s ability to recog-
nize, encode, store memories, and discriminate informa-
tion [73,74].

1. EPSC/IPSC
For synaptic devices, external stimuli such as optical/electrical
pulses applied to the electrodes correspond to the release of
nerve impulses in biological synapses. The channel conduct-
ance is equivalent to the synaptic weight, and the resulting
channel currents are referred to as excitatory postsynaptic cur-
rent (EPSC) or inhibitory postsynaptic current (IPSC), corre-
sponding to EPSP and IPSP of biological synapses, respectively.
In general, the value of the PSC is determined by the synaptic

Fig. 2. (a) Structural schematic diagram of the biological synapse. (b) and (c) EPSC/IPSC of the perovskite-gated synaptic device triggered by an
optical stimulus when the gate voltage is 5 V/−6 V. Reprinted with permission from [67]. Copyright 2022, John Wiley and Sons. (d) EPSC/IPSC
triggered by a 980 nm/450 nm optical pulse for synaptic transistor based on the Pyr-GDY/Gr/PbS-QD heterojunction. Reprinted with permission
from [68]. Copyright 2001, Elsevier. (e) and (f ) EPSC as a function of pulse duration/power density for synaptic transistors based on the
MAPbI3∕SiNM heterojunction. Reprinted with permission from [23]. Copyright 2020, American Chemical Society. (g) Typical decay of the
PSC as a function of time. Reprinted with permission from [69]. Copyright 2014, Nature Portfolio.
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weights. As the most fundamental synaptic behavior that can be
observed in optoelectronic synaptic devices, PSC is regarded as
an essential component of ANNs. As shown in Figs. 2(b) and
2(c), PSC occurs when the perovskite-gated synaptic device is
stimulated by a single light pulse. Here, EPSC or IPSC is con-
trolled by the gate voltage of the synaptic device [67]. In ad-
dition to the modulation of the gate voltage, the wavelength
of the optical stimulus is also significant in affecting the
PSC [60,75]. Hou et al. reported an ambipolar optoelectronic
synaptic device based on a Pyr-GDY/graphene/PbS quantum
dot (Pyr-GDY/Gr/PbS-QD) heterojunction. As shown in
Fig. 2(d), the triggered IPSC is converted to EPSC when
the wavelength of the incident optical pulse is switched from
450 to 980 nm [75]. Furthermore, for synaptic devices, the
magnitude of the PSC is determined by the strength and du-
ration of the applied light/electrical pulse, as shown in Figs. 2(e)
and 2(f ) [23]. The decay of PSC with time after the pulse ap-
plied to the device has disappeared can be perfectly fitted by the
Kohlrausch stretched exponential function (SEF) [76–80],

I � �I 0 − I∞� exp
�
−

�
t − t0
τ

�
β
�
� I∞, (1)

where I 0 and t0 stand for the PSC and time when the pulse
stimulation ceased, respectively; I∞ denotes the value at the
final stabilization of the current; and τ and β refer to the re-
tention time and the stretch index in the range 0–1, respec-
tively. Figure 2(g) shows a typical decay curve of EPSC with
time [69], from which it can be seen that the value of EPSC

decreased first and then tended to be stable, closely matching
the curve fitted according to the SEF.

2. PPF/PPD
A pair of pulse stimuli is applied to the synapse, as shown in
Fig. 3(a), which modifies the concentration of Na�∕Mg� and
other ions that contribute to the change in the postsynaptic
membrane potential, which in turn affects the magnitude of
the PSC after the two stimulations [54], causing a variation
in the degree of connectivity between the two adjacent neurons
[72]. Similarly, if two consecutive pulses of stimulation are ap-
plied to the synaptic device, the spikes of PSCs obtained from
the first and second stimuli are denoted as A1 and A2, respec-
tively. If the value of A2 is larger than A1, which implies an
enhanced postsynaptic response, then this synaptic behavior
is described as paired-pulse facilitation (PPF); conversely, the
phenomenon indicates a depressed postsynaptic response, as
well defined as paired-pulse depression (PPD) [83]. The
dependence of PPF/PPD behavior on the pulse interval time
makes it assume an important role in decoding the temporal
data in the synaptic signal [84,85]. Wang et al. proposed a syn-
aptic device based on MoS2∕PTCDA heterostructure and ob-
tained typical PPF/PPD behavior by applying a pair of gate
pulse stimuli to it [Figs. 3(b) and 3(c)] [81]. The PPF/
PPD index can be calculated based on the classical equation
�A2∕A1� × 100% or ��A2 − A1�∕A1� × 100% to calculate
[54,55]. Interestingly, the facilitation/depression percentage
gradually decays/strengthens to 100% with the increase of

Fig. 3. (a) Schematic diagram of typical PPF/PPD behavior of synapses with two successive pulse stimuli. Reprinted with permission from [54].
Copyright 2013, American Institute of Physics. (b) and (c) IPSC/EPSC curves of heterojunction synaptic devices stimulated by two consecutive
pulses. (d) and (e) The PPD/PPF index obtained as a function of stimulus pulses applied with differentΔt , where the dashed line represents the fitted
curve based on Eq. (2). (b)–(e) Reprinted with permission from [81]. Copyright 2019, Wiley-VCH. (f ) PPF/PPD effect triggered by a pair of
532 nm/375 nm optical pulses. (g) PPF/PPD index as a function of Δt stimulated by 532 nm/375 nm optical pulses. (f ) and (g) Reprinted with
permission from [55]. Copyright 2022, Wiley-VCH. (h) PPF ratio as a function of pulse interval stimulated with different electrical pulse peaks.
Reprinted with permission from [82]. Copyright 2019, Wiley-VCH.
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pulse interval time, and the attenuation/enhancement curve
can be well fitted by the following double-exponential function
[Figs. 3(d) and 3(e)] [21,54,68,74,75,84]:

PPFindex � 1� C1 exp�−Δt∕τ1� � C2 exp�−Δt∕τ2�, (2)

where C1 and C2 are defined as the initial facilitation constants
of the biological synapse; τ1 and τ2 are considered as fast and
slow characteristic relaxation times, respectively, which can be
extracted from the fitted curves; and Δt is the interval time
between two consecutive pulse stimuli. Notably, in biological
synapses, the values of τ1 and τ2 both range from milliseconds
to seconds, where the value of τ1 tends to be an order of mag-
nitude smaller than the value of τ2 [68,72,81]. Furthermore, it
has been reported in the literature that PPF behavior is also
influenced by numerous external factors, for instance, the wave-
length of the optical stimulus [Figs. 3(f ) and 3(g)] [1,55] or the
spikes of the electrical stimulus [Fig. 3(h)] [82]. Similarly, the
mechanisms of PPF behavior in the neurosynaptic devices are

caused by many factors, such as the growing number of con-
ductive ions accumulated at the interface when τ is greater than
Δt, allowing the channel conductance to be enhanced with the
increase of the pulse number [86].

3. STP to LTP Transition
Depending on the duration of changes in synaptic weight, syn-
aptic plasticity is divided into short-term plasticity (STP),
which gradually recovers to its initial state within a short period
after being triggered, and long-term plasticity (LTP), which
maintains variations in synaptic weight for minutes, weeks,
or even permanently [68,72]. The above-mentioned EPSC,
IPSC, PPF, and PPD are all typical manifestations of STP,
which is stored in the hippocampus of the brain according
to the model of learning and memory proposed by Atkinson
and Shiffrin [Fig. 4(a)] [87,89]. After a constant process of con-
solidation and rehearsal, the synaptic weights are strengthened,
and STP transforms into LTP for storage in the cerebral cortex

Fig. 4. (a) Schematic diagram of a typical STP to LTP transition model. (b)–(e) I ds as a function of (b) presynaptic optical pulse wavelength,
(c) presynaptic optical pulse density, (d) presynaptic optical pulse width, and (e) number of presynaptic optical pulses. (a)–(e) Reprinted with
permission from [87]. Copyright 2022, Springer Nature. Four typical STDP learning rules are illustrated in (f ) the antisymmetric Hebbian learning
rule, (g) antisymmetric anti-Hebbian learning rule, (h) symmetric Hebbian learning rule, and (i) symmetric anti-Hebbian learning rule, simulated by
a GST-based memristor. (f )–(i) Reprinted with permission from [88]. Copyright 2013, Nature Portfolio.
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[68,89,90]. In the human brain, the STP assumes the respon-
sibility of receiving and transmitting information, while LTP, as
a typical representative of Hebb’s plasticity, is regarded as the
basis for achieving learning and memory functions [91–93].
Referring to Hebb’s postulate (this synaptic efficacy improves
if the postsynaptic neuron is stimulated successively and repeat-
edly by the presynaptic neuron) [94,95], the synaptic weight
can be adapted by varying the pulse wavelength, power density,
pulse width, and number of incident light pulses to imple-
ment the transition from STP to LTP further [Figs. 4(b)–4(e)],
which is the basis of the learning behavior imitated by synaptic
devices [85,87,91,96–98]. Notably, following the enhance-
ment or diminution of synaptic weight, short-term potential
(STP) and long-term potential (LTP) are classified as short-
term depression (STD) and long-term depression (LTD),
respectively [99].

4. Spike-Dependent Plasticity
Spike-dependent plasticity (SDP) is regarded as the dependence
of synaptic plasticity on spiking stimuli, with specific manifes-
tations of various types such as synaptic duration-dependent
plasticity (SDDP), spike-rate-dependent plasticity (SRDP),
synaptic voltage-dependent plasticity (SVDP), and spike-num-
ber-dependent plasticity (SNDP), which reflect the implica-
tions of the width, frequency, amplitude, and the number of
spike pulses transmitted from presynaptic neurons on synaptic
weights, respectively [51,90,100–105]. In terms of SRDP, two
features of LTP, known as LTP and LTD, are triggered by pulse
spikes at high frequency from 20 to 100 Hz and low frequency
from 1 to 5 Hz, respectively [93,106].

Similar to SRDP, spike-timing-dependent plasticity (STDP)
is one of the representative forms of LTP, which was first initially
proposed as the computer learning algorithm widely applied in
machine intelligence and now reflects the dependence of synap-
tic weights (ΔW ) on the sequence and time interval (Δt,
Δt � tpost − tpre) of pre- and postsynaptic neural activities in
biological synapses [107–110]. More specifically, when the pre-
synaptic spike arrives ahead of the postsynaptic spike (Δt > 0,
prepost-pairing), the pulse signal induces the generation of LTP,
with an increase in synaptic weight; on the contrary, the degree of
synaptic connection diminishes at Δt < 0 (postpre-pairing),
and LTDbehavior is triggered [92,95,111,112]. Various spiking
patterns and relative spike durations influence the direction and
amplitude of synapses, inducing the generation of the typical
four forms of STDP, namely the antisymmetric Hebbian learn-
ing rule, antisymmetric anti-Hebbian learning rule, symmetric
Hebbian learning rule, and symmetric anti-Hebbian learning
rule, respectively [56,88,94,113,114]. Li et al. reported a
GST-based memristor synaptic device relying on the capturing
and releasing of charge traps caused by defects within the
material itself, and four different forms of STDP can be well
exhibited by the device, as shown in Figs. 4(f )–4(i) [88]. In com-
putational neuroscience, asymmetric STDP learning rules can
be modeled by exponential functions, while symmetric STDP
learning rules are fitted by Gaussian functions, which can be
summarized as [64,88,93,115]

ΔW �
�
Ae�−Δtτ � �W 0, asymmetric

Ae�−Δt
2

τ2
� �W 0, symmetric

, (3)

where A andW 0 are defined as the scaling factor of the function
and the constant indicating the non-associative component for
synaptic weight alteration, respectively, and τ is considered as the
time constant of the fitted function.

C. Energy Consumption
The energy consumption generated when any synaptic behav-
ior has been triggered is considered one of the essential indica-
tors to evaluate the performance of synaptic devices, and the
calculation was proposed by Kuzum et al. in 2013 [116].
Specifically, the energy consumption E � V × I × t, where
V is defined as the electrical pulse amplitude, t is defined as
the width of the electrical pulse, and I is regarded as the trig-
gered PSC [117]. In contrast to electrical synapses, a new cal-
culation method of energy consumption was introduced by
Tan et al. for optical synaptic devices: E � P × S × t, where
P is determined as the power density of the incident light pulse,
t is defined as the optical pulse width, and S is defined as the
effective illumination area of the synaptic device [118].
Remarkably, one of the two energy consumption calculation
methods above applies to synaptic events triggered by electrical
pulses, while the other focuses on the energy consumption in-
duced by optical pulses. When the synaptic behavior is stimu-
lated by optical and electrical signals in parallel, then the energy
consumption is also obtained by superimposing the two calcu-
lation methods above [63].

The human brain consumes a fixed amount of energy to
carry out the normal physiological activity, and the cost of neu-
ronal release spikes is so prohibitive that only no more than 1%
of neurons are active simultaneously [119]. Furthermore, in
biological nervous systems, 1–10 fJ energy is consumed per
synaptic spike, a metric that can be accomplished by the
few synaptic devices proposed in recent years [116,120].
However, the energy consumption of most synaptic devices
is quantified in pJ or even nJ, which hinders the development
of neuromorphic computing [63,64,121–124]. To achieve
large-scale integration of synaptic devices, the limitation of high
energy consumption must be overcome, which can be opti-
mized by weakening the programming pulse amplitude, short-
ening the programming pulse width, decreasing the effective
area of the synaptic device, and reducing the programming cur-
rent, respectively [65,66,125].

3. STRUCTURE AND MECHANISM OF MHP-
BASED OPTOELECTRONIC SYNAPTIC DEVICES

To date, significant efforts have been devoted to designing and
fabricating MHP-based artificial synaptic devices for achieving
synaptic plasticity. According to a different stimulation source,
MHP-based optoelectronic synapses can be divided into all-
optical stimulated synapses and optically–electrically synergistic
stimulated synapses. In this section, we focus on two-terminal
memristors and three-terminal transistors employed for artifi-
cial optoelectronic synapses, as well as analyzing their device
architectures and operational mechanisms. More specifically,
the fundamental synaptic characteristics (terminal number,
synaptic functions, energy consumption, etc.) are summarized
in Table 1.
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A. MHP-Based Optoelectronic Synaptic Memristors

1. Optically–Electrically Synergistic Stimulated
Optoelectronic Synaptic Memristors
Two-terminal memristors, first proposed by Prof. Chua in
1971 [140], are widely employed in hardware implementation
for neural networks due to advantages such as a simple fabri-
cation process, low energy consumption, and large-scale inte-
gration [141,142]. Interestingly, for such memristors with
inherent switching effects, the transition between multiple re-
sistive states relies on the electrical-bias-history-dependent re-
sistance, a characteristic applicable to simulating synaptic
behaviors [143–145]. A typical MHP-based optoelectronic
synaptic memristor with an Ag∕MAPbI3∕Ag horizontal

structure was presented by Zhu and Lu [Fig. 5(a)] [76]. As
shown in Fig. 5(b), resistance switching (RS) dynamics can
be tuned by optical stimulation since illumination inhibits
the formation of iodine vacancy (V _I∕V �

I ) in MAPbI3 while
simultaneously facilitating its spontaneous annihilation pro-
cess. In addition, the accumulation and spontaneous decay
of the concentration in V _I∕V

�
I are intimately related to the

stimulus of the input pulses, and theMAPbI3-based memristor
can mimic synaptic behavior, such as STP and LTP benefiting
from the similarity of this dynamics of V _I∕V

�
I to Ca

2� of bio-
logical synapses. Further, the dependence of the spontaneous
attenuation rate of the conductance upon illumination
and the LTP/LTD behavior of the device is illustrated in

Table 1. Summary of MHP-Based Optoelectronic Synapses

Device Architectures Structure
Availability
of Stimuli

Operation
Mechanism

Synaptic
Functions

Energy
Consumption Reference

Au∕P�VDF − TrFE�∕Cs2AgBiBr6∕ITO Two-terminal All-optical Schottky barrier STP/SNDP/SRDP 0 [51]
ITO∕PEDOT:PSS∕CuSCN∕
CsPbBr3 PNs

Two-terminal Optical/
Electrical

Surface charge
trapping/detrapping

STP/LTP – [126]

Graphene∕h−BN∕CsPbBr3 QDs Three-terminal Optical/
Electrical

Photoelectric effect STP/LTP – [57]

PEA2SnI4∕Y6 Three-terminal All-optical Surface charge
trapping/detrapping

STP/LTP – [60]

IGZO∕CsPbBr3 QDs Three-terminal Optical/
Electrical

Surface charge
trapping/detrapping

STP/LTP – [127]

BA2PbBr4∕IZTO Three-terminal Optical/
Electrical

Surface charge
trapping/detrapping

STP/LTP – [128]

CsPbBr3∕TIPS Three-terminal Optical/
Electrical

Surface charge
trapping/detrapping

STP/LTP 0.076 pJ [62]

BCP∕MAPbBr3∕PS∕pentacene Three-terminal Optical/
Electrical

Surface charge
trapping/detrapping

STP/LTP – [129]

Au∕KI−MAPbI3∕ITO Two-terminal Optical/
Electrical

Ion migration STP – [130]

IGZO/PVK NPs/IGZO Three-terminal Optical/
Electrical

Surface charge
trapping/detrapping

STP/LTP – [131]

CsPbI2Br PNCs∕IGZO Three-terminal Optical/
Electrical

Persistent photo-
conductivity (PPC)

STP/LTP <2.6 pJ [132]

SiNM∕MAPbI3 Three-terminal All-optical Surface charge
trapping/detrapping

STP/LTP ∼1 pJ [23]

ITO/perovskite/P3HT/Ag Two-terminal Optical/
Electrical

Ion migration STP/LTP/STDP – [133]

ITO∕PCBM∕MAPbI3:Si NCs∕
Spiro−OMeTAD∕Au

Two-terminal All-optical Surface charge
trapping/detrapping

STP/SNDP/SRDP 0 [20]

CsPbBr3 QDs∕MoS2 Three-terminal Optical/
Electrical

Surface charge
trapping/detrapping

STP/LTP 4.24 nJ [58]

�PEA�2SnI4 Three-terminal All-optical Surface charge
trapping/detrapping

STP/LTP – [134]

CsBi3I10∕SWCNTs Three-terminal Optical/
Electrical

Surface charge
trapping/detrapping

STP/LTP – [135]

PDVT−10∕PVP� CsPbBr3 QDs Three-terminal All-optical PPC effect STP/LTP 4.1 pJ [136]
CsPbBr3 QDs∕PMMA∕pentacene Three-terminal Optical/

Electrical
Surface charge

trapping/detrapping
STP/SVDP/LTP
SNDP/SDDP

1.4 nJ [61]

�rGO∕PEDOT:PSS�∕�PEA�2SnI4 Two-terminal All-optical Surface charge
trapping/detrapping

STP/LTP – [137]

MAPbBr3 PDs grown from graphene
lattice

Three-terminal Optical/
Electrical

Surface charge
trapping/detrapping

STP/LTP 36.75 pJ [138]

CsPbBr3 QDs∕DPP−DTT Three-terminal Optical/
Electrical

Surface charge
trapping/detrapping

STP/LTP 0.4 pJ [56]

ITO∕SnO2∕CsPbCl3∕TAPC∕
TAPC:MoO3∕MoO3∕Ag∕MoO3

Two-terminal All-optical Surface charge
trapping/detrapping

STP/SFDP/LTP
SNDP/SDDP

– [139]
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Figs. 5(c) and 5(d), implying that the synaptic behaviors of the
MAPbI3-based memristor are synergistically regulated by the
optical and electrical stimuli. Recently, the Au∕KI-MAPbI3∕
ITO optoelectronic synaptic memristor with vertical structure
was proposed by Lao et al. utilizing the excellent optical proper-
ties of MAPbI3 [130]. The device architecture is shown in
Fig. 5(e), where the additive KI was introduced to enhance
the crystallinity ofMAPbI3 while modifying its surface defects,
which facilitated the ion migration of the mixed film, in turn
leading to the dynamic range of the memristor conductance
being further extended. In this case, the conductance level ini-
tially increases sharply after the application of 800 consecutive
voltage pulses followed by a steady level to the maximum value,
while the conductance relies on the illumination assuming a
synergistic stimulus role, meaning that the memory level of

the electrical input is enhanced upon illumination [Fig. 5(f )].
Further, the classical LTP and LTD behaviors triggered by the
voltage stimuli applied under illumination were observed
[Fig. 5(g)].

2. All-Optical Stimulated MHP-Based SPTs
Compared with conventional electrically driven synaptic devi-
ces, light-driven synapses have attracted much attention due to
lower interconnection energy consumption, faster signal trans-
mission, and higher bandwidth [29]. Given this, Yang et al.
demonstrated an all-optical two-terminal synaptic memristor
with an ITO∕SnO2∕CsPbCl3∕TAPC∕TAPC:MoO3∕MoO3∕
Ag∕MoO3 vertical structure [Fig. 5(h)] [139], where the TAPC
layer serves as a hole transporting layer and the CsPbCl3 film
layer assumes the responsibility of a UV light absorber.

Fig. 5. (a) Schematic illustration of the MAPbI3-based optoelectronic synaptic memristor prefabricated on the SiO2 substrate. (b) Schematic
diagram of the generation/annihilation process of V _I∕V �

I under darkness (upper) and illumination (lower). (c) Dependence of the spontaneous
decay of the MAPbI3-based memristor conductance value upon illumination (1.29 μW∕cm2). (d) LTP/LTD of the MAPbI3-based optoelectronic
synapse with applying electrical spikes (1 V, 10 ms) upon darkness/illumination (1.29 μW∕cm2). (a)–(d) Reprinted with permission from [76].
Copyright 2018, American Chemical Society. (e) Schematic illustration of the Au∕KI−MAPbI3∕ITO optoelectronic synaptic memristor prefab-
ricated on the glass substrate. (f ) Dependence of the device conductance on the electrical stimulus (0.5 V, 2 ms, V read � 0.1 V) upon illumination
(0, 0.25, 0.63 mW∕cm2). (g) LTP/LTD behaviors of the Au∕KI−MAPbI3∕ITO-based synapse with applying consecutive positive/negative voltage
spikes (1 V/−1 V, 2 ms, V read � 0.1 V) at various illumination intensities. (e)–(g) Reprinted with permission from [130]. Copyright 2021, Wiley-
VCH. (h) Schematic illustration of the ITO∕SnO2∕CsPbCl3∕TAPC∕TAPC:MoO3∕MoO3∕Ag∕MoO3 synaptic memristor with dual-mode op-
eration. (i) EPSC triggered by two successive optical spikes (2.5 μW∕cm2, 365 nm). (j) Dependence of the PSC on the pulse number upon various
illumination intensities (from 12.5 to 50 μW∕cm2). (k) Dependence of the SFDP index on the various illumination intensities ranging from 1.25 to
12.5 μW∕cm2. (h)–(k) Reprinted with permission from [139]. Copyright 2021, Wiley-VCH.
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Eventually, based on the working mechanism of UV-induced
surface charge trapping/detrapping under the stimulus of op-
tical spikes, this dual-mode tuned all-optical synapse can well
accomplish biological synaptic behaviors such as PPF, SNDP,
and SFDP [Figs. 5(i)–5(k)].

B. MHP-Based Synapse Phototransistors

1. Optically–Electrically Synergistic Stimulated MHP-Based
SPTs
Unlike two-terminal memristors, three-terminal transistors
have multi-gate structures comparable to biological dendrites,
facilitating synergistic modulation of input pulses, stability
of operation, and the transmission of synaptic signals
[139,146–148]. Emerging MHP-based synapse phototransis-
tors (SPTs) have attracted attention due to their outstanding
photovoltaic conversion efficiency, further demonstrating their
structural stability and operational controllability. For instance,
Park et al. have designed an ITZO∕BA2PbBr4 SPT for
NVSs with the structure shown in Fig. 6(a), which regulates
synaptic behaviors by coupling stimulation with optical and
electrical spikes [128]. When the light signal was applied to
the BA2PbBr4-based SPT, the photogating effect was induced

due to the regulation of the energy band at the interface be-
tween ITZO and BA2PbBr4 facilitating the separation of
photo-excited carriers, thereby increasing the value of PSC
by capacitive coupling [Fig. 6(b)]. Additionally, the character-
istics of LTP and LTD were observed, which are generated by
the photogating effect triggered by 50 successive light pulses
(100 μW∕cm2, 1 s) and the recombination of photo-excited
carriers prompted by 50 successive positive gate pulses
(20 V, 2 s) [Fig. 6(c)]. Notably, the value of EPSCs in LTP
characteristics increased with the decay of λ, following the op-
tical absorption spectra of the BA2PbBr4 film. Not only the
gate voltage pulses but also the drain electrical spikes of the
SPTs are available for the regulation of the conductance state
as demonstrated in a graphene-PQD (G-PQD) superstructure
exploited by Pradhan et al. [138]. The current-voltage charac-
teristic of the proposed structure with and without illumination
is shown in Fig. 6(d), where quantum dots act as the photo-
absorbing material and graphene assumes the responsibility of
an effective carrier transport channel. The behaviors of LTP and
LTD can be achieved as band-to-band/impurity-to-band tran-
sitions in the SPT prompting an effective charge transfer from
PQDs to the graphene layer. Moreover, the study briefly

Fig. 6. (a) Schematic illustrations of the BA2PbBr4-based SPT by inserting the IZTO layer. (b) Energy band diagram of the ITZO∕BA2PbBr4
SPT under illumination. (a), (b) Reprinted with permission from [128]. Copyright 2021, Royal Society of Chemistry. (c) LTP and LTD of the
ITZO∕BA2PbBr4 SPT with applying 50 potentiation (100 μW∕cm2, 1 s) light pulses and 50 depression (20 V, 2 s) gate pulses. Adapted with
permission from [128]. Copyright 2021, Royal Society of Chemistry. (d) The IDS − V DS characteristic of the G-PQD SPT was evaluated under
illumination and dark, respectively. Inset, schematic illustrations of the SPT based on G-PQD superstructure. (e) LTP and LTD of the G-PQD SPT
with applying 20 consecutive potentiation (1.1 μW∕cm2, 5 s) light spikes and consecutive depression (−0.5 V, 1 s) drain spikes. (f ) LTP of the
G-PQD SPT stimulated by 20 consecutive light spikes (1.1 μW∕cm2, 5 s) with different V G . (d)–(f ) Reprinted with permission from [138].
Copyright 2021, American Association for the Advancement of Science. (g) Schematic illustration of the PEA2SnI4∕Y6 ambipolar SPT.
(h) Wavelength-dependent ΔEPSC peaks. (i) Operation mechanism of synaptic plasticity in response to visible and NIR light pulse irritation.
(g)–(i) Reprinted with permission from [60]. Copyright 2021, Wiley-VCH.
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analyzed the gate-dependent LTP transient characteristic of the
G-PQD SPT stimulated by 20 consecutive light spikes
(1.1 μW∕cm2, 5 s) [Fig. 6(f )].

2. All-Optical Stimulated MHP-Based SPTs
Huang et al. broadened the absorption spectrum of PEA2SnI4
perovskite by inserting a Y6 organic film, enabling the proposed
PEA2SnI4∕Y6 ambipolar SPT to actualize the red/green/blue/
near-infrared (NIR) wavelength selectivity [60]. With the
structure illustrated in Fig. 6(g), this SPT accomplishes synap-
tic plasticity behaviors in response to stimuli of optical spikes,
relying on charge trapping/detrapping processes at the
PEA2SnI4∕Y6 interface. Compared with the optically–electri-
cally synergistic stimulated devices, as an all-optical type device,
the advantage of this structure is that the increase and decrease
of conductance can be modulated by the optical signal only,
contributing to avoiding the generation of joule heat during
the operation. In this work, an IPSC/EPSC was triggered when
the SPT was stimulated by a visible/NIR light spike [Fig. 6(h)],
with the mechanism of operation shown in Fig. 6(i). Here, elec-
tron–hole pairs were generated in both the PEA2SnI4 film and
Y6 under the stimulus of visible optical spikes, where photo-
generated electrons were trapped by Sn vacancies present in the
PEA2SnI4, which resulted in an enhanced photogating effect
and evoked more holes to recombine with partial electrons
in the channel, leading to a reduction in the electron concen-
tration and PSC values of the SPT eventually. As opposed to
this, when an NIR light spike was applied, benefiting from the
generation of electron–hole pairs in Y6, the holes outflowing
from Y6 were trapped at the PEA2SnI4∕Y6 interface, which
further contributed to the increase in the values of the PSCs.

4. EMERGING APPLICATIONS

Recently, MHP-based optoelectronic synaptic devices have suc-
ceeded in mimicking the basic synaptic functions by skillfully

incorporating light as the pulse signal, which builds a bridge to
construct AI and brain-like computing at the physical level.
Further, this section summarizes the novel application perspec-
tives of the devices and classifies them roughly into three key
categories: (i) neuromorphic computing, (ii) high-order learn-
ing behaviors, and (iii) NVSs.

A. Neuromorphic Computing
1. Arithmetic Computing
Due to the increasing demand for storage and computational
accuracy, most resistive random-access memories (RRAMs)
that specialize in binary storage face the challenge of insufficient
reproducibility, attracting attention to innovative computa-
tional concepts [2,149–151]. In fact, since the increased/
decreased MHP-based optoelectronic device currents in
response to optical/electrical impulses strongly resemble the ad-
dition/subtraction calculation of the abacus, the proposed
MHP-based optoelectronic synaptic devices on this basis can
serve to accomplish decimal arithmetic functions, which have
implications for the implementation of algorithms other than
binary [152–154]. Huang et al. reported the MHP-based
optoelectronic memristor with MAPbI3∕SiNCs hybrid film
fabricated by a two-step method in 2020 [20]. Figure 7(a)
illustrates the increase of the initial current (EPSCi) as a func-
tion of the stimulus number (i) of the device under optical
spikes irritation (with interval time of 0.2 s). In general, a per-
fect linear correlation has to be exhibited between i and ESPCi
to satisfy the arithmetic requirement of decimal counting (here,
the linear fitting Pearson correlation coefficient is up to 0.99)
[155]. When m� n is calculated, the value of i is derived by
matching the exciting current value with the specific EPSCi by
adding n consecutive pulse stimuli after m consecutive pulse
stimuli. The operation of subtraction works in the same way
as addition [151], and the value of m − n can be calculated
by computing the amount of optical excitation necessary for the
EPSCi change from EPSCn to EPSCm [Fig. 7(b)]. In the case

Fig. 7. (a) Excitation currents (EPSCi) by optical pulses are a linear function over the number of optical impulses (i, ranging from 1 to 16).
(b) Schematic diagram of the principle for employing optical excitation in a synaptic device to achieve addition and subtraction operations. Diagram
of the (c) addition operation “9� 7,” (d) multiplication operation “5 × 3,” (e) subtraction operation “10 − 7,” and (f ) division operation “15∕10”.
Reprinted with permission from [20]. Copyright 2020, Elsevier.
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of “9 + 7,” the EPSC excited by 9 plus 7 consecutive optical
pulses reaches 162 pA, which equals the value of EPSC16,
corresponding to the calculation process of “9 + 7” = 16
[Fig. 7(c)]. Apart from simple addition algorithm, the operation
of subtraction, multiplication, and division can also be imple-
mented by these MHP-based synaptic devices, as shown in
[Figs. 7(d)–7(f )].

2. Logic Functions
As is well known, not only arithmetic computation but also
dynamic logic operations play an important role in reflecting
the data processing capability of the neural system [150],
providing additional support for achieving multifunctional
neuromorphic computing [154,156,157]. Based on multiple-
light-stimulated synapse of DPPDTT∕CsPbBr3 QDs with the
capability of mimicking essential synaptic behavior [Fig. 8(a)],
two series of optical signals at 450 and 500 nm were employed
by Hao et al. to implement Boolean logic arithmetic including
both “AND” and “OR” logic functions [158]. Much more in-
terestingly, at a weak optical illumination of 0.12 mW∕cm2,
the ΔEPSC value increases beyond a threshold current
(5 nA) only when two peaks are imposed on the synapse sep-
arately, illustrating the “AND” logic function [Fig. 8(b)].

Nevertheless, with an increased irradiation density of
0.3 mW∕cm2, the ΔEPSC triggered by either stimulus re-
mains high compared to the threshold current, signifying
the implementation of the “OR” logic function [Fig. 8(c)].

In addition to simple “AND” and “OR” logic operations,
other dynamic logical functions such as the nervous system’s
ability to process information can be embodied by MHP-based
optoelectronic synaptic devices [53,136]. For example, Zhang
et al. exploited optoelectronic transistors to achieve synaptic
functions [Fig. 8(d)] [56], in which the CsPbBr3 QDs/DPP-
DTT heterostructure facilitates photonic modulation, while
the electrical modulation arises from the electric double layer
effect in the ionic conductive cellulose nanopaper (ICCN).
Here, electrical and optical signals work in tandem to control
the switching of logical functions during equipment operation.
The output current is above the threshold value (−60 pA) only
when two electrical spikes (−0.5 V) are stimulated simultane-
ously without light modulation, corresponding to the “AND”
logic function [Fig. 8(e)], while the current triggered independ-
ently by any electrical spike exceeds the threshold current when
modulated by weak light and is considered as the “OR” logic
operation [Fig. 8(f )]. Further, the “NAND” logic operation

Fig. 8. (a) Schematic illustration of the multi-input light-stimulated CsPbBr3 QDs-based optoelectronic synaptic transistor. Diagram of the
(b) “AND” and (c) “OR” logic functions tuned by multiple optical inputs. (a)–(c) Reprinted with permission from [158]. Copyright 2020,
American Chemical Society. (d) Schematic diagram of a synapse for switching logic functions via electrical and optical signals. Input-output char-
acteristics of the (e) “AND,” (f ) “OR,” (g) “NAND,” and (h) “NOR” logic operations moderated synergistically by the optical and electrical inputs.
(d)–(h) Reprinted with permission from [56]. Copyright 2022, Elsevier.
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modulated by medium light is proposed when both electrical
spikes added to the gate electrode are 0.3 V [Fig. 8(g)], and the
“NOR” logic operation is induced by raising the light intensity
to strong light [Fig. 8(h)].

3. Artificial Neural Networks
It is well known that brain-inspired neuromorphic computing
breaks the limitations of computing speed, while the emergence
of novel synapse-based ANNs provides the potential to render
their terminal form [56,159,160]. Han et al. designed a light-
stimulated synaptic transistor device based on a graphene/hex-
agonal boron nitride (h-BN)/perovskite QD structure and then
investigated the learning capability of the device through the
Modified National Institute of Standards and Technology
(MNIST) database [57]. As shown in Figs. 9(a) and 9(b),
the device was stimulated with 100 continuous light pulses
and 100 continuous electrical pulses to obtain 200 conductance
values, which were used as synaptic weights by the researchers
to construct a supervised learning framework for ANN; 784
input neurons, 300 hidden neurons, and 10 output neurons
were linked by synaptic weights to form the ANN [Fig. 9(d)].
The recognition accuracy of the device-based ANN gradually
saturates with the amount of training, and when tested with
handwritten digit images from the MINIST dataset, the overall
recognition accuracy of up to 91.5% can be seen at around 40
training epochs [Fig. 9(c)]. The authors then directly demon-
strate the superior recognition ability of the ANN by showing
the weight mapping matrix of the output images. As shown in
Figs. 9(e) and 9(f ), the originally ambiguous outlines eventually
present the numbers clearly after continuous training, which
shows that the ANN has excellent pattern recognition ability
and provides another possibility for the development of neuro-
morphic computing.

B. High-Order Learning Behaviors

1. STDP
As a fundamental characteristic of event-driven learning in neu-
ral network systems [161], STDP learning rules are increasingly
proposed as a basis for neuromorphic modeling built on
CMOS circuits or memristor synapses [56,162–169]. Yang
et al. proposed a synaptic memory with an ITO/CsPbBr2I/
P3HT/Ag structure, which benefited from the migration prop-
erties of halogen ions and succeeded in imitating the STDP
behavior of synapses [133]. As shown in Fig. 10(a), a series
of presynaptic pulses (V pre, amplitude of 0.7 V) and postsynap-
tic pulses (V post, amplitude of −0.3 V ) with a pulse width of 1 s
were applied to the Ag electrode and ITO electrode at both
terminals of the memristor, respectively. Here, synaptic weights
(ΔW ) reach a maximum when both V pre and V post arrive at the
same time, followed by a decline with increased time interval
(Δt), denoted as the symmetric Hebbian learning rule
[Fig. 10(b)]. When reversed spike V pre (amplitude of −0.7 V )
and V post (amplitude of 0.3 V) stimuli are applied to the mem-
ristor, the synaptic weights change from excitatory to inhibitory
previously, also diminishing reliance on the increasing Δt, and
in this way, the symmetric anti-Hebbian learning rule is ob-
served [Fig. 10(c)]. In biological systems, the majority of the
information is available through vision. As well for synaptic de-
vices, the introduction of optical pulses as stimulus signals to
mimic STDP holds enormous promise apart from electrical
pulse activation. In Fig. 10(d), silicon solar cells are connected
in series with the ITO electrode and Ag electrode of the mem-
ristor for constituting the artificial retina system. During the
operation of the device, the photovoltaic cell generated electri-
cal spikes upon two sets of optical pulses, which corresponded
to the V pre (amplitude of 50 mA∕cm2, width of 30 s) and V post

applied to the ITO and Ag electrodes, respectively. For the solar

Fig. 9. (a) Schematic illustration of the changes in postsynaptic currents resulting from successive stimulation with optical and electrical signals.
(b) Characteristic curves of optical pulse writing and electrical pulse erasing of the device. (c) Variation curves of handwritten digit recognition
accuracy along with training epochs of different devices. (d) Schematic illustration of input number “8” and artificial neural network. (e) The initial
state of the weight matrix is related to the input numbers. (f ) The final state of the weight matrix is related to the input numbers. Reprinted with
permission from [57]. Copyright 2022, Wiley-VCH.
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cell, if the anode and cathode are connected to the ITO electrode
and the Ag electrode, ΔW will be decreased with the increased
Δt between the two sets of light optical pulses, and the symmet-
ric Hebbian learning rule will be demonstrated [Fig. 10(e)]. In
turn, when the cathode and anode of the solar cell were con-
nected to Ag and ITO electrodes, respectively, the inhibitory
ΔW attenuated depended on the growing Δt as well, imple-
menting the symmetric anti-Hebbian learning rule [Fig. 10(f )].

2. Associative Learning
Associative learning refers to the influence of the relationships
between different events on the brain’s learning, inspired by the
brain’s associations [170,171]. Pavlov’s dog experiment, also
known as the Pavlovian conditioned reflex, first proposed in
1927, has been simulated by many synaptic devices as a classic
case of associative learning [53,130,136,172–175]. Cheng et al.

reported a phototransistor based on theCsPbBr3 −QDs∕MoS2
mixed-dimensional vertical van der Waals heterojunction
(MVVH), which can mimic classical conditioning utilizing
photoelectronic hybrid inputs [58]. Herein, food and bell ring-
ing are identified as an unconditioned stimulus (US) and neu-
tral stimulus (NS), respectively, while salivation is defined as an
unconditioned response (UR). At first, the UR could be acti-
vated by the US alone, but after repeated stimulation by form-
ing an association between US and NS, a separate NS can
activate UR, which means that the NS is transformed into a
conditioned stimulus (CS) [Fig. 10(g)] [58]. The specific ex-
perimental procedure is shown in Fig. 10(h), where 10 con-
secutive electrical spikes (amplitude of 0.13 V, width of
10 ms) and optical spikes (amplitude of 225 mW∕cm2, width
of 10 ms) are employed to simulate NS and US, respectively.
Herein, the EPSCs triggered by the electrical pulse stimulus

Fig. 10. (a) V pre and V post applied to perovskite-based memristors evoked both (b) the symmetric Hebbian learning rule and (c) the symmetric
anti-Hebbian learning rule. (d) V pre and V post applied to a memristor-based artificial retinal system evoked both (e) the symmetric Hebbian learning
rule and (f ) the symmetric anti-Hebbian learning rule. (a)–(f ) Reprinted with permission from [161]. Copyright 2017, Nature Portfolio.
(g) Schematic diagram of the concept of Pavlovian conditioned reflex. (h) Emulation of Pavlovian conditioned reflex by using
CsPbBr3−QDs∕MoS2 MVVH. (i) Emulation of Pavlovian conditioned reflex by setting photoelectric synergy training duration to 60 ms.
(g)–(i) Reprinted with permission from [58]. Copyright 2020, Wiley-VCH. (j) Schematic diagram of the reward and punishment mechanisms
that occur in creatures. (k) Emulation of punishment mechanism by synergistic control of optical spikes and positive voltage spikes. (l) Emulation of
reward mechanism by synergistic control of optical spikes and negative voltage spikes. (j)–(l) Reprinted with permission from [131]. Copyright 2021,
American Chemical Society.
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individually failed to reach the threshold current (ITH), impli-
cating that the dog was unable to generate salivation. After 10
optical and electrical pulse stimuli were applied in parallel, the
EPSCs were found to exceed ITH when stimuli with electrical
pulses were imposed alone, meaning that the synergetic training
conferred the ability to induce conditioned response (CR) in
NS. Finally, the EPSC gradually decayed to the original state
after a period of US, which indicates the disappearance of the
association between US and NS, corresponding to the elimina-
tion of redundant information in the human brain [176,177].
Moreover, the triggered EPSCs were significantly increased by
increasing the photoelectric synergy training time, as shown in
Fig. 10(i), reflecting the fact that, in the case of associative
learning, the degree of learning and memory is influenced
by the intensity of training. As a further manifestation of asso-
ciative learning, the reward and punishment mechanism refers
to the fact that creatures can be trained by reward and punish-
ment to seek benefits and avoid harm when making decisions.
Duan et al. introduced IGZO/PVK NPs/IGZO heterostruc-
ture-based synaptic devices to mimic the photoelectric-synerg-
istically typical reward and punishment mechanism [Fig. 10(j)]
[131]. In this case, opening windows (NS), feeding (reward),
and punishment are simulated by optical pulses, negative volt-
age pulses, and positive voltage pulses, respectively. As a result,
after synergistic training with NS and punishment/reward, the
triggered EPSCs (biological responses) remained below/above
the threshold value even when the punishment/reward behav-
ior was applied individually [Figs. 10(k) and 10(l)].

3. Emotions and Learning
It is well known that emotion, as an emotional experience or
response, plays a critical role in learning effectiveness; however,
the complex feedback mechanism linking learning and emotion
has not been completely elucidated by any research [178–180].
In recent years, emulating this biological behavior with synaptic

devices has attracted the interest of researchers [181–183]. Yin
et al. reported a SiNM∕MAPbI3 heterostructure-based opto-
electronic synapse that simulates visual learning and memory
behaviors, depending on various emotional states [23]. As
shown in Fig. 11(a), 30 consecutive optical pulses (wavelength
of 532 nm, amplitude of 1 μW∕cm2, width of 200 ms) are
applied to the synaptic device acting as the learning process,
while a maximum value of the triggered EPSC is defined as
the learning result, and the decay of EPSC over time is con-
sidered as the forgetting process [Fig. 11(b)]. Further, the pos-
itive, neutral, and negative moods correspond to the situations
when the gate voltage is equal to −4 V, −3 V, and 1 V, respec-
tively. As a result, the process of learning training for the letter
“H” in three different mood states is shown in Fig. 11(c). When
people learn with positive moods, the impression of the letter
“H” is clearest as well as the most effective; as the mood state
turns from neutral to negative, the impression of the letter “H”
also changes from general to ambiguous, with weaker learning
effects. Notably, the retention of memory after tens of seconds
under different moods is similar to the above. In addition to
electrical signals, optical signals can also be employed to mimic
mood states. For example, Lao et al. demonstrated a device
based on the Au∕KI −MAPbI3∕ITO vertical structure by
inserting potassium iodide (KI) into MAPbI3 film, which can
mimic the learning and memory behaviors that occur when the
brain is exposed to positive/negative mood states [130]. Dark
states (illumination states) are treated as negative mood (pos-
itive mood), while conductance reaching 29 μS is set as the
target memory level [Fig. 11(d)]. When the brain is in a neg-
ative mood, the value of conductance triggered by 100 consecu-
tive electrical spikes (amplitude of 1 V, width of 2 ms) reaches
29 μS, which is much larger than that required when the brain
is in a positive mood. Through a few seconds of the forgetting
process, the conductance values have to be stimulated by 58
(13) consecutive electrical spikes to attain 29 μS again when

Fig. 11. (a) Relationship between the maximum EPSC triggered by 30 light pulses and varying gate voltages. (b) EPSC is triggered by 30 light
pulses at varying gate voltages. (c) Recognition of the letter “H” as the brain enters positive/neutral/negative mood states. (a)–(c) Reprinted with
permission from [23]. Copyright 2020, American Chemical Society. (d) Diagram of the relationship between learning and memory under different
emotional states. Reprinted with permission from [130]. Copyright 2021, Wiley-VCH.
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the brain is in a negative (positive) mood, which means the ef-
ficiencies of learning and relearning are controlled by emotions.

C. Neuromorphic Visual Systems
More recently, an extensive number of MHP-based optoelec-
tronic synaptic devices, including MHP-based memristors and
MHP-based transistors, were employed to fabricate and mimic
artificial intelligence visual systems (AIVs) for sensing and
processing images [52,62,67,128,184–186]. As an example,
Lee et al. reported a dynamic artificial visual adaptation neuron
(DAVAN) device with a 3 × 3 array that mimics the perceptual
ability of the human brain using the adaptive ability of the
device to the incident light intensity, offering the possibility
of constructing an artificial neuromorphic device [59]. A

schematic diagram of the human visual system is shown in
Fig. 12(a), in which nerve cells in the visual cortex perceive
and process the visual information delivered by photoreceptors.
As shown in Fig. 12(b), after being repeatedly stimulated, bio-
logical nerve cells produce a biological habituation process: the
facilitation process (pre) and the inhibition process (post), re-
spectively. To mimic this function, the authors proposed an
optoelectronic neuromorphic circuit structured by two neuro-
transistors and a perovskite photodetector [Fig. 12(c)]. The
EPSC of the DAVAN device under the stimulation of repeated
light pulses is shown in Fig. 12(d). It can be seen that the dy-
namic trend of the response current is consistent with the bio-
logical habituation process in Fig. 12(b). Figures 12(e)–12(h)

Fig. 12. (a) Schematic diagram of the human visual system. (b) Schematic representation of habituated behavior when the nervous system is
stimulated. (c) Schematic diagram of the structure of the DAVAN device. (d) Habituation behavior of the device when stimulated by 40 light pulses.
(e) Optical photograph of the DAVAN device for the 3 × 3 array. (f ) Schematic diagram of the DAVAN device array in photopic vision condition
(left) and scotopic vision condition (right) when illuminated with different intensities of incident light. (g) and (h) Schematic diagram of the dynamic
response process of the DAVAN device at the center of the array. Reprinted with permission from [59]. Copyright 2020, Wiley-VCH.
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illustrate the optical image and dynamic response process of the
3 × 3 array based on the DAVAN device. Here, the authors
successively applied repetitive weak and strong light signal
stimuli to the array to simulate the dynamic response EPSC
of the array under the photopic vision and scotopic vision con-
ditions. The results show that the device can realize the sim-
ulation of the perceptual process of the visual system under
different lighting conditions, which has a promising application
in the realization of artificial perception systems.

5. CONCLUSION AND PROSPECTS

In this review, recent advances in MHP-based optoelectronic
synapses with related neuromorphic applications are summa-
rized. Compared with conventional electrical synapses, opto-
electronic synaptic devices using synergistic stimulation
exhibit unique superiorities such as higher interference immun-
ity and lower energy consumption, which show promise to
break the von Neumann bottleneck and build complex neural
networks. So far, benefiting from the fascinating properties of
MHPs including charge trap, tunable bandgap, and ion migra-
tion, MHP-based phototransistors and memristors have been
proposed as optoelectronic synaptic devices. The light-
stimulated synaptic plasticity (e.g., PPF, STP, STD, LTP, and
LTD) of biological synapses and classical Hebbian learning
rules was successfully simulated. In addition, several applica-
tions of optoelectronic synapses in the fields of neuromorphic
computing, higher-order learning, and AVSs were enumerated,
which have significant implications for building energy-
efficient neuromorphic systems. Although considerable
progress has been achieved on the device architectures and ap-
plications of MHP-based optoelectronic synapses, there are still
various issues worth further exploration.

(i) Reducing power consumption. In 2016, the power con-
sumption of Google’s AlphaGo during the confrontation with a
human chess player reached 100 kW, far more than the 20 W
consumed by the human brain [187–189]. To the best of our
knowledge, optoelectronic synapses with low-power character-
istics still require operation consumption in pJ or even nJ per
synaptic behavior, leading to an urgent and thorny problem of
minimizing energy consumption during large-scale array inte-
gration. In this case, downscaling the dimensions of the MHP-
based optoelectronic synapses while optimizing their structure
is regarded as the effective solution proposed so far.
(ii) All-optical stimulated synapse. Scientific findings show

that human access to external information relies on the biologi-
cal perception system, and the amount of information transmit-
ted by the human visual system accounts for more than 70%
[190,191]. For this reason, light signals for constructing opto-
electronic neuromimetic engineering have been introduced
into synaptic electronics, which has motivated the emergence
of optical-stimulated synapses, optical-assisted synapses, and
optical-output synapses. Considering the energy consumption
and operational mode, all-optical stimulated synapses are the
preferred development direction for future AI compared with
complex synergistic stimuli. Because of this, exploiting superior
light absorption properties of MHPs for developing all-optical
modulated optoelectronic synapses is urgently demanded to
facilitate the advancement of neuromorphic devices.

(iii) Innovative applications. Until now, the majority of efforts
are concentrated on simple simulations of synaptic behaviors,
which remain in the initial stage, without a standardized model
for evaluating synaptic devices. In terms of MHP materials,
synaptic devices possessing a single function responding to op-
tical stimuli alone have already failed to satisfy the demands of
AI, and stretchable optoelectronic sensorimotor synapses based
on MHPs by their inherently high mechanical flexibility de-
serve to be exploited as well. In addition, the evolution of these
MHP-based optoelectronic synapses remains essential for the
development of future neuromorphic systems, such as AIVs,
wearable electronics, and human-machine interfaces.
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